Question 1. Consider the function $f(x)=\frac{5}{x}+\frac{x}{5}$.
i. What are the critical points of f ?
ii. What is the minimum value of f on the interval $[1,10]$?

Solution .:

i. The critical points of f are the values of x that make $f^{\prime}(x)=0$ or else have $f(x)$ defined but $f^{\prime}(x)$ undefined. Firstly, $f^{\prime}(x)=\frac{-5}{x^{2}}+\frac{1}{5}$ by the power rule. This is 0 iff $\frac{5}{x^{2}}=\frac{1}{5}$, which requires $25=x^{2}$, meaning $x=5$ or $x=-5$. $f^{\prime}(x)$ is undefined iff $x=0$, but since $f(x)$ is also undefined there, this isn't a critical point. So the critical points are 5 and -5 .
ii. Since we are considering the interval $[1,10]$, the only points we need to consider are 5 , and the endpoints 1 and 10 :

$$
\begin{aligned}
f(1) & =\frac{5}{1}+\frac{1}{5}=5.2 \\
f(5) & =\frac{5}{5}+\frac{5}{5}=2 \\
f(10) & =\frac{5}{10}+\frac{10}{5}=2.5
\end{aligned}
$$

Hence $f(5)$ is the minimum value of f on $[1,10]$.

Question 2. Consider the function $f(x)=e^{\sin x}$.
i. Calculate $f^{\prime}(x)$.
ii. What is the maximum value of f on $[0, \pi]$?

Solution . \therefore
i. Using the chain rule, $\frac{\mathrm{d}}{\mathrm{d} x} e^{\sin x}=e^{\sin x} \cdot\left(\frac{\mathrm{~d}}{\mathrm{~d} x} \cos x\right)=\cos (x) e^{\sin x}=f^{\prime}(x)$.
ii. Intuitively, $f(x)$ is largest when $\sin (x)$ is largest, which happens when $\sin (x)=1$, meaning the maximum value should be $e^{1}=e$. We will prove this using the methods of calculus. First we must find the critical points of f. These are the values of x where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined. Since $f^{\prime}(x)=\cos (x) \cdot e^{\sin (x)}$ is defined everywhere, x is a critical point whenever

$$
f^{\prime}(x)=\cos (x) e^{\sin x}=0
$$

Since e^{A} is never 0 for any A, we can divide by it. So $f^{\prime}(x)=0$ whenever $\cos (x)=0$. Within the interval $[0, \pi]$, this only happens at $x=\pi / 2$. So to find the maximum value, we only need to compute $f(0), f(\pi / 2)$, and $f(\pi)$. We easily have $f(0)=f(\pi)=e^{0}=1$ whereas $f(\pi / 2)=e>1$. Hence e is the maximum value of f on $[0, \pi]$.

