MATH 135 — QUIZ 5 — JAMES HOLLAND 2019-10-08

Question 1. Consider the function $f(x) = \frac{5}{x} + \frac{x}{5}$.

i. What are the critical points of f?

ii. What is the minimum value of f on the interval [1, 10]? Solution :.

- i. The critical points of f are the values of x that make f'(x) = 0 or else have f(x) defined but f'(x) undefined. Firstly, $f'(x) = \frac{-5}{x^2} + \frac{1}{5}$ by the power rule. This is 0 iff $\frac{5}{x^2} = \frac{1}{5}$, which requires $25 = x^2$, meaning x = 5 or x = -5. f'(x) is undefined iff x = 0, but since f(x) is also undefined there, this isn't a critical point. So the critical points are 5 and -5.
- ii. Since we are considering the interval [1, 10], the only points we need to consider are 5, and the endpoints 1 and 10:

$$f(1) = \frac{5}{1} + \frac{1}{5} = 5.2$$

$$f(5) = \frac{5}{5} + \frac{5}{5} = 2$$

$$f(10) = \frac{5}{10} + \frac{10}{5} = 2.5$$

Hence f(5) is the minimum value of f on [1, 10].

Question 2. Consider the function $f(x) = e^{\sin x}$.

i. Calculate f'(x).

ii. What is the maximum value of f on $[0, \pi]$?

Solution .:.

i. Using the chain rule, $\frac{d}{dx}e^{\sin x} = e^{\sin x} \cdot \left(\frac{d}{dx}\cos x\right) = \cos(x)e^{\sin x} = f'(x)$.

ii. Intuitively, f(x) is largest when sin(x) is largest, which happens when sin(x) = 1, meaning the maximum value should be $e^1 = e$. We will prove this using the methods of calculus. First we must find the critical points of f. These are the values of x where f'(x) = 0 or f'(x) is undefined. Since $f'(x) = cos(x) \cdot e^{sin(x)}$ is defined everywhere, x is a critical point whenever

$$f'(x) = \cos(x)e^{\sin x} = 0.$$

Since e^A is never 0 for any A, we can divide by it. So f'(x) = 0 whenever $\cos(x) = 0$. Within the interval $[0, \pi]$, this only happens at $x = \pi/2$. So to find the maximum value, we only need to compute f(0), $f(\pi/2)$, and $f(\pi)$. We easily have $f(0) = f(\pi) = e^0 = 1$ whereas $f(\pi/2) = e > 1$. Hence e is the maximum value of f on $[0, \pi]$.